The award-winning Echelon is a waterproof hydraulic ankle that absorbs and damps on impact, self-aligns on rough and sloping surfaces, then remains dorsiflexed at toe-off. These design features help reduce abnormal pressures at the socket interface and other joints, promote comfort and postural symmetry to help reduce the risk of falls and preserve musculoskeletal health.
The Echelon range sits at the heart of our pioneering prosthetic philosophy which makes our products so popular with users around the world. Created with a sharp focus on replicating a natural and safe walking experience, each product in the Echelon Range has a characteristic to suit different users and their requirements, providing confidence in every step.
This not only provides excellent energy storing and release properties but also works in harmony with the range of movement in the ankle to provide a natural and comfortable walking experience.
When walking up slopes, the additional range allows the body to move forward over the foot, reducing energy requirements by making rollover easier. When walking down slopes, the foot complies with the slope without forcing the leg forward, allowing for a more controlled descent.
Hydraulic damping and foot springs produce a visco-elastic response that simulates the behaviour of muscles by storing and releasing energy. When compared to non-hydraulic ankles*, this technology is clinically proven to provide comfort, safety, natural walking, balanced limb loading and overall greater patient satisfaction.
*Clinical studies, latest research papers and full references available on our website.
Blatchford Biomimetic Hydraulic Technology mimics the dynamic and adaptive qualities of muscle actuation to encourage more natural gait. Multiple independent scientific studies, comparing Blatchford hydraulic ankle-feet to non-hydraulic feet, have shown:
Over a decade after challenging conventional wisdom, new scientific evidence continues to be published on the medical advantages of hydraulic ankles. Discover our White Paper ‘A Study of Hydraulic Ankles’.
*Clinical studies, latest research papers and full references available on our website.
Improvements in Clinical Outcomes using Echelon compared to ESR feet
1. | Riveras M, Ravera E, Ewins D, Shaheen AF, Catalfamo-Formento P. Minimum toe clearance and tripping probability in people with unilateral transtibial amputation walking on ramps with different prosthetic designs. Gait & Posture. 2020 Sep 1;81:41-8. | |
2. | Johnson L, De Asha AR, Munjal R, et al. Toe clearance when walking in people with unilateral transtibial amputation: effects of passive hydraulic ankle. J Rehabil Res Dev 2014; 51: 429. |
Download Overview |
3. | McGrath M, Laszczak P, Zahedi S, et al. Microprocessor knees with “standing support” and articulating, hydraulic ankles improve balance control and inter-limb loading during quiet standing. J Rehabil Assist Technol Eng 2018; 5: 2055668318795396. |
Download Overview |
4. | Askew GN, McFarlane LA, Minetti AE, et al. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid ‘ankle’: insights from body centre of mass dynamics. J NeuroEngineering Rehabil 2019; 16: 39. |
Download Overview |
5. | De Asha AR, Munjal R, Kulkarni J, et al. Impact on the biomechanics of overground gait of using an ‘Echelon’hydraulic ankle–foot device in unilateral trans-tibial and trans-femoral amputees. Clin Biomech 2014; 29: 728–734. |
Download Overview |
6. | De Asha AR, Munjal R, Kulkarni J, et al. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic’ankle’damping. J Neuroengineering Rehabil 2013; 10: 1. |
Download Overview |
7. | De Asha AR, Johnson L, Munjal R, et al. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment. Clin Biomech 2013; 28: 218–224. |
Download Overview |
8. | Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation. J Rehabil Assist Technol Eng 2019; 6: 2055668318820784. |
Download Overview |
9. | Bai X, Ewins D, Crocombe AD, et al. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking. PLOS ONE 2017; 12: e0180836. |
Download Overview |
10. | Bai X, Ewins D, Crocombe AD, et al. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. PLOS ONE 2018; 13: e0205093. |
Download Overview |
11. | Portnoy S, Kristal A, Gefen A, et al. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait Posture 2012; 35: 121–125. |
Download Overview |
12. | McGrath M, Davies KC, Laszczak P, et al. The influence of hydraulic ankles and microprocessor-control on the biomechanics of trans-tibial amputees during quiet standing on a 5° slope. Can Prosthet Orthot J; 2. | |
13. | Moore R. Effect of a Prosthetic Foot with a Hydraulic Ankle Unit on the Contralateral Foot Peak Plantar Pressures in Individuals with Unilateral Amputation. JPO J Prosthet Orthot 2018; 30: 165–70. |
Download Overview |
14. | Moore R. Effect on Stance Phase Timing Asymmetry in Individuals with Amputation Using Hydraulic Ankle Units. JPO J Prosthet Orthot 2016; 28: 44–48. |
Download Overview |
15. | Sedki I, Moore R. Patient evaluation of the Echelon foot using the Seattle Prosthesis Evaluation Questionnaire. Prosthet Orthot Int 2013; 37: 250–254. |
Download Overview |
See all the Clinical Evidence for every Blatchford product in our Clinical Evidence Finder Tool.
Max. User Weight:
125kg*
275lb*
Activity Level:
3
Size Range:
22-30cm
Component Weight:
688g†
1lb 8oz†
Build Height:
115-125mm
4¹⁷/₃₂" - 4⁵⁹/₆₄"
Heel Height:
10mm
*Maximum user weight 100kg and always use one higher spring rate category than shown in the Spring Set Selection table.
†Component weight shown is for a size 26cm without foot shell.
Alignment Wedge | 940093 |
Example
EC | 25 | L | N | 3 | S |
Product Code | Size | Side | Width* | Spring set |
Sandal Toe |
*Narrow (N) and Wide (W) available for sizes 25-27 only.
For dark tone add suffix D.
Example: foot size 25, left, narrow, spring rating 3, sandal toe.
Click here for Technical Information (Instructions for Use) »