The EliteVT prosthetic foot delivers shock absorption, rotation and stability to Level 3-4 users in a cosmetic and compact package. It manages the requirements of both walking and running through balancing biomimetic functionality with our proven spring technology.
Clinical Outcomes using e-carbon feet
Improvements in Clinical Outcomes using shock-absorbing pylon/torque absorber compared to rigid pylon
1. | Crimin A, McGarry A, Harris EJ, et al. The effect that energy storage and return feet have on the propulsion of the body: A pilot study. Proc Inst Mech Eng [H] 2014; 228: 908–915. | |
2. | Curtze C, Hof AL, van Keeken HG, et al. Comparative roll-over analysis of prosthetic feet. J Biomech 2009; 42: 1746–1753. | |
3. | Strike SC, Arcone D, Orendurff M. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Gait Posture 2018; 62: 327–332. | |
4. | Ray SF, Wurdeman SR, Takahashi KZ. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroengineering Rehabil 2018; 15: 6. | |
5. | Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation. J Rehabil Assist Technol Eng 2019; 6: 2055668318820784. |
Download Overview |
6. | Haber CK, Ritchie LJ, Strike SC. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task. Hum Mov Sci 2018; 58: 337–346. | |
7. | Rock CG, Wurdeman SR, Stergiou N, Takahashi KZ. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses. PloS one. 2018;13(10). | |
8. | Highsmith MJ, Kahle JT, Miro RM, et al. Differences in Military Obstacle Course Performance Between Three Energy-Storing and Shock-Adapting Prosthetic Feet in High-Functioning Transtibial Amputees: A Double-Blind, Randomized Control Trial. Mil Med 2016; 181: 45–54. | |
9. | Rogers JP, Strike SC, Wallace ES. The effect of prosthetic torsional stiffness on the golf swing kinematics of a left and a right-sided trans-tibial amputee. Prosthet Orthot Int 2004; 28: 121–131. | |
10. | Berge JS, Czerniecki JM, Klute GK. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics. J Rehabil Res Dev 2005; 42: 795. | |
11. | Klute GK, Berge JS, Orendurff MS, et al. Prosthetic intervention effects on activity of lower-extremity amputees. Arch Phys Med Rehabil 2006; 87: 717–722. | |
12. | Flick KC, Orendurff MS, Berge JS, et al. Comparison of human turning gait with the mechanical performance of lower limb prosthetic transverse rotation adapters. Prosthet Orthot Int 2005; 29: 73–81. | |
13. | Gard SA, Konz RJ. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J Rehabil Res Dev 2003; 40: 109–124. | |
14. | Boutwell E, Stine R, Gard S. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role? Prosthet Orthot Int 2017; 41: 178–185. | |
15. | Adderson JA, Parker KE, Macleod DA, et al. Effect of a shock-absorbing pylon on transmission of heel strike forces during the gait of people with unilateral trans-tibial amputations: a pilot study. Prosthet Orthot Int 2007; 31: 384–393. |
See all the Clinical Evidence for every Blatchford product in our Clinical Evidence Finder Tool.
Max. User Weight:
166kg
365lb
Activity Level:
3-4
Size Range:
22-30cm
Component Weight:
750g†
1lb 10oz†
Build Height:
170mm
6¹¹/₁₆"
Heel Height:
10mm
†Component weight shown is for a size 26cm without foot shell.
Example
EVT | 25 | L | N | 7 | S | 3 |
Product Code | Size | Side | Width* | Spring Set | Sandal Toe | Shock Spring |
For dark tone add D.
Foot example: Size 25 left, narrow, spring set 7, sandal toe, shock spring 3.