Latest Research Papers

Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid ‘ankle’: insights from body centre of mass dynamics

The energy consumption of trans-tibial amputees, walking at various speeds and over different gradients, were measured when using a hydraulic ankle unit (Echelon) and a rigidly-attached prosthesis. Using Echelon significantly reduced the metabolic energy cost of walking and hence increased energy efficiency. During level walking, the mean reduction in metabolic cost was 11.8% with Echelon, so for the same amount of effort, walking speed increased by 8.3%. When walking on slopes, the mean reduction in metabolic cost was 20.2% with Echelon.
 
Askew GN, McFarlane LA, Minetti AE, Buckley JG. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid ‘ankle’: insights from body centre of mass dynamics. Journal of neuroengineering and rehabilitation. 2019;16(1):39.
 
View the full article study here.

 

A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees

The biomechanical effects of a rigidly-attached foot, a passive hydraulic ankle and a microprocessor-controlled hydraulic ankle were measured during slope ascent and descent for trans-femoral amputees. The hydraulic ankles showed improved bio-mimicry in both walking conditions and better prosthetic knee stability during slope descent.

Bai X, Ewins D, Crocombe AD, Xu W. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. PLOS ONE. 2018; 13(10):e0205093.

View the full study here.

 

The influence of a microprocessor-controlled hydraulic ankle on the kinetic symmetry of trans-tibial amputees during ramp walking: a case series

Using a case series design, gait analysis was performed with four trans-tibial amputees to identify differences in the underlying walking biomechanics between the on and off conditions. With microprocessor-control active, there was less reliance on the sound limb for support in both ascent and descent walking conditions. Microprocessor-control of hydraulic ankle-feet reduced the total loading of the sound limb joints, for both walking conditions, for all participants. This may have beneficial consequences for long-term joint health and walking efficiency.

McGrath M, Laszczak P, Zahedi S, Moser D. The influence of a microprocessor-controlled hydraulic ankle on the kinetic symmetry of trans-tibial amputees during ramp walking: a case series. J Rehabil Assist Technol Eng. 2018; 5:2055668318790650.

View the full study here.

 

Joint Moments During Downhill and Uphill Walking of a Person with Transfemoral Amputation with a Hydraulic Articulating and a Rigid Prosthetic Ankle—A Case Study

The study sought to investigate the effects of a microprocessor-controlled hydraulic ankle compared to a fixed ankle design when walking at a range of graded inclines, ranging from -12 to + 12 degrees. The gait of one individual with unilateral TF amputation, using the same prosthetic foot with rigid and hydraulic ankle components, was analysed and compared with a control group of 18 able-bodied participants.  It was concluded that during sloped walking, the use of a hydraulically articulating versus rigid ankle joint component reduced the joint moments observed at the hip joint of the residual limb in an individual with unilateral TF amputation. This indicates a benefit for persons with TF amputation as the increased ankle function reduces the moment producing requirements of the hip joint, which may result in decreased energy consumption and subsequently a more efficient gait.

Alexander N, Strutzenberger G, Kroell J, Barnett CT, Schwameder H. Joint Moments During Downhill and Uphill Walking of a Person with Transfemoral Amputation with a Hydraulic Articulating and a Rigid Prosthetic Ankle—A Case Study. JPO J Prosthet Orthot. 2018; 30(1):46–54.

View the full study here.

 

Microprocessor knees with ‘standing support’ and articulating, hydraulic ankles improve balance control and inter-limb loading during quiet standing

The study looked at the biomechanical differences when trans-femoral amputees were standing on a slope. Four prosthetic conditions were tested; microprocessor knee ‘standing support’ mode activated (ON) and deactivated (OFF), combined with a rigidly attached foot (RA) and with an articulating, hydraulic ankle-foot (HA). Both technologies in isolation improved inter-limb load distribution and balance, with the combination of the two technologies providing the best performance.

McGrath M, Laszczak P, Zahedi S, Moser D. Microprocessor knees with ‘standing support’ and articulating, hydraulic ankles improve balance control and inter-limb loading during quiet standing. J Rehabil Assist Technol Eng. 2018; 5:2055668318795396.

View the full study here.

 

Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system

Eight trans-femoral amputees, using an integrated limb system (Linx), performed gait terminations while walking downhill. Two prosthetic conditions were tested; microprocessor-control active and inactive. Greater involvement of the prosthetic limb with the microprocessor active indicated greater confidence in their prosthesis.

Abdulhasan ZM, Scally AJ, Buckley JG. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Clin Biomech. 2018; 57:35–41.

View the full study here.

 

Effect of a Prosthetic Foot with a Hydraulic Ankle Unit on the Contralateral Foot Peak Plantar Pressures in Individuals with Unilateral Amputation

Effect of a Prosthetic Foot with a Hydraulic Ankle Unit on the Contralateral Foot Peak Plantar Pressures in Individuals with Unilateral Amputation Peak plantar pressures of 13 participants with established K3 activity levels were measured before and after the addition of a prosthetic foot with hydraulic ankle unit using an Amcube pressure plate. The results showed a statistically significant reduction in contralateral peak plantar pressures with the use of a prosthetic foot containing a hydraulic ankle unit. The benefits of changing to a prescription including a foot with integrated hydraulic ankle unit can have significant effects on the forces acting on the remaining foot of an individual with amputation.

Moore R. Effect of a Prosthetic Foot with a Hydraulic Ankle Unit on the Contralateral Foot Peak Plantar Pressures in Individuals with Unilateral Amputation. JPO J Prosthet Orthot. 2018; 30(3):165–70.

View the full study here.

 

Individuals with Unilateral Transtibial Amputation and Lower Activity Levels Walk More Quickly when Using a Hydraulically Articulating Versus Rigidly Attached Prosthetic Ankle-Foot Device

Two minute walk tests and 3D gait analysis were performed on lower mobility amputees, using both a rigidly-attached ankle-foot and an articulating, hydraulic ankle-foot (Avalon). The effects on gait performance were investigated using a non-energy-storage-and-return foot with a hydraulic attachment during overground walking. Kinematic and kinetic data was recorded while five individuals with UTA, deemed K2 activity level by their prescribing physician, performed two-minute walk tests (2MWTs) and 10 overground gait trials. The hydraulic device was shown to increase walking speed and inter-limb loading symmetry in comparison with a rigid attachment when the results were compared.

Barnett CT, Brown OH, Bisele M, Brown MJ, De Asha AR, Strutzenberger G. Individuals with Unilateral Transtibial Amputation and Lower Activity Levels Walk More Quickly when Using a Hydraulically Articulating Versus Rigidly Attached Prosthetic Ankle-Foot Device. JPO J Prosthet Orthot. 2018; 30(3):158–64.

View the full study here.